1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
| import torch import torch.nn as nn import numpy as np import matplotlib.pyplot as plt
input_size = 1 output_size = 1 num_epochs = 60 learning_rate = 0.001
x_train = np.array([[3.3], [4.4], [5.5], [6.71], [6.93], [4.168], [9.779], [6.182], [7.59], [2.167], [7.042], [10.791], [5.313], [7.997], [3.1]], dtype=np.float32) y_train = np.array([[1.7], [2.76], [2.09], [3.19], [1.694], [1.573], [3.366], [2.596], [2.53], [1.221], [2.827], [3.465], [1.65], [2.904], [1.3]], dtype=np.float32)
model = nn.Linear(input_size, output_size)
criterion = nn.MSELoss() optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)
for epoch in range(num_epochs): inputs = torch.from_numpy(x_train) targets = torch.from_numpy(y_train)
outputs = model(inputs) loss = criterion(outputs, targets)
optimizer.zero_grad() loss.backward() optimizer.step()
if (epoch + 1) % 5 == 0 : print('Epoch [{}/{}], Loss:{:.4f}'.format(epoch + 1, num_epochs, loss.item()))
predicted = model(torch.from_numpy(x_train)).detach().numpy()
plt.plot(x_train, y_train, 'ro', label = 'Original data') plt.plot(x_train, predicted, label = 'Fitted line') plt.legend() plt.show()
torch.save(model.state_dict(), 'model.ckpt')
|